
619

Chapter 8

Limits of Technology

The Analytical Engine has no pretensions to originate anything.
It can do whatever we know how to order it to perform.

Ada Lovelace

hat materialistic and mechanistic science is driving humanity into an evolutionary
cul-de-sac is nowhere clearer than in the business world. There is a widespread belief
in society today that technological development can drive economic growth indefi-

nitely, that technology is the solution to all human woes. But is it? Since soon after the inven-
tion of the stored-program computer in the middle of the last century, computer scientists
have claimed that they could create artificial intelligence, artificial consciousness, and even ar-
tificial life in their machines. We can see from Chapter 4, ‘Transcending the Categories’ that
we human beings are not machines and nothing but machines, for we are Divine Cosmic be-
ings.

It is thus abundantly clear that the invention of the stored-program computer requires us
to make fundamental changes to the work ethic and the way we run our businesses. For those
still not convinced of the fact that both capitalism and communism are incompatible with the
invention of the stored-program computer, this chapter shows beyond any doubt that tech-
nology is limited, that human beings are the leading edge of evolution, not computers. We do
so by asking the question, “Could computers program themselves without human, that is, di-
vine intervention?”

Part I, ‘Integral Relational Logic’ showed how we can model the task of an information sys-
tems architect in developing a comprehensive model of the processes and entities of a business
enterprise and hence of the Universe. In this chapter, we use IRL to model the job of a com-
puter programmer. This subject is rather technical; it requires a good knowledge of computers
and computer programming languages to fully understand. But this is not knowledge that
computer scientists normally highlight. For if they did, it would be only too obvious that it

T

620 PART II: THE UNIFIED RELATIONSHIPS THEORY

is not possible to program a computer to perform all the cognitive activities performed by hu-
man beings in the workplace.

Can machines think?
The key to this issue is the possibility that machines might be able to think, which is a fairly
recent subject in Western philosophy. As Vernon Pratt has pointed out, it arose from the in-
troduction of the Cartesian-Newtonian mechanistic paradigm in the seventeenth century.1

Since the invention of the programmable computer in the middle of the last century, this
question has come under the auspices of cognitive science, defined by Howard Gardner as
psychology, philosophy, artificial intelligence, linguistics, anthropology, and neuroscience.2

Alan Turing, often considered the father of modern computer science, made a major con-
tribution to this debate in his much-quoted article published in the philosophical journal
Mind in 1950,3 which began with the words, “I propose to consider the question ‘Can ma-
chines think?’”4 Turing himself was of the opinion that the answer to his question is yes, for
he went on to conclude in his article that “I believe that at the end of the century the use of
words and general educated opinion will have altered so much that one will be able to speak
of machines thinking without expecting to be contradicted”.5

Since then, despite all the efforts of computer scientists to create artificial intelligence,6

consciousness,7 and even life,8 Turing’s prediction does not seem to have come to pass. I
know of no machine in the world that has passed the Turing test, that claims that it is at least
as intelligent as human beings. Why is this? Well, we can get an inkling for this ‘failure’ from
the insightful memoir on Charles Babbage’s Analytical Engine,9 written in 1843 by Ada Love-
lace,10 the poet Byron’s daughter, which Turing quoted in his article.11 Ada wrote:

The Analytical Engine has no pretensions to originate anything. It can do whatever we know how to
order it to perform. It can follow analysis; but it has no power of anticipating any analytical relations or
truths. Its province is to assist us in making available what we are already acquainted with.12

So what is the truth? Even today opinions vary.
The many computer scientists working in the field of artificial intelligence obviously fa-

vour Turing’s opinion. This can be seen most clearly from the Dartmouth Conference in
1956, when the foundations of AI were laid down by a number of leading computer scientists,
among them Marvin Minsky and John McCarthy. For the latter stated the fundamental hy-
pothesis of AI as follows: “Every aspect of learning or any other feature of intelligence can in
principle be so precisely described that a machine can be made to simulate it”.13

On the other hand, the management scientists in the American business schools who clas-
sified all activities in business into structured, semi-structured, and unstructured tasks,14 seem
to favour Ada Lovelace’s view. For if it were possible to discover the deep structures that un-
derlie semi-structured and unstructured tasks in a formal manner, as the AI scientists claim,

CHAPTER 8: LIMITS OF TECHNOLOGY 621

all tasks would be structured and automatable, and there would be no need to make a distinc-
tion between the different types of task.

So if the aims of the AI scientists are achievable, the fundamental principle of all monetary
economies would break down. While human beings might wish to consume the products of
a materialist society, it would be machines that would be the principal creators of goods and
services. Thus the loop between human beings as workers and consumers in the economy
would be broken. As virtually no economist or politician is looking at the possibility of such
a situation, we must assume that they do not believe that it will happen.

 The reason why scientists and philosophers cannot agree on this vitally important issue is
that science, as it is practised today, is not capable of resolving the issue. The arguments tend
to oscillate between the Turing test, described in his 1950 Mind article, and the consequences
of Gödel’s Incompleteness Theorems,15 identified by J. R. Lucas in his article ‘Minds, Ma-
chines and Gödel’ first published in the journal Philosophy in 1961.16

 He argued that Gödel’s metamathematical reasoning could not possibly be done by a ma-
chine, because human consciousness is necessary to see the truth of Gödel’s statement, “This
theorem is unprovable”. Another philosopher, John R. Searle,17 has used his famous Chinese
room thought experiment to refute the possibility of what he calls ‘Strong AI’. He argues that
it is quite possible for an English-speaking human being, who has no knowledge of Chinese,
to mechanistically process a string of Chinese characters fed to him, without any understand-
ing of what he is doing. Nevertheless, the answer produced at the end of the process is the
correct one from the perspective of a Chinese who understands the symbols. Both Lucas and
Searle have been much attacked for their endeavours by Hofstadter and Dennett.18

Roger Penrose, Rouse Ball Professor of Mathematics at Oxford University, has taken up
J. R. Lucas’s arguments in his best-selling book, The Emperors New Mind: Concerning Com-
puters, Minds, and the Laws of Physics. A key point he makes is that mechanical processing is
essentially algorithmic. So, are all human cognitive activities algorithmic—insight, for exam-
ple? The answer he comes to is a tentative no; tentative because Penrose is aware that his un-
derstanding of the relationship of the mind and consciousness is still limited. As he says in
the final paragraph of his first book, “For the answers to such questions [about the nature of
human existence] to be resolvable in principle, a theory of consciousness would be needed.
But how could one even begin to explain the substance of such problems to an entity that was
not itself conscious ... ?”19

In a review of his book in Time magazine in June 1990, Penrose encapsulated his view with
the statement: “Computers will never think because the laws of nature do not allow it.” Mar-
vin Minsky is quoted as saying in response, “As far as I can tell, he is just plain wrong.”

In fact, this is an argument that nobody can win. It is not so much a win-lose game as a
lose-lose one. For if the AI scientists are right our economic system will collapse and all will

622 PART II: THE UNIFIED RELATIONSHIPS THEORY

be losers. And if they are wrong, why spend so much effort in doing something that is impos-
sible? Isn’t genuine human intelligence much more energizing and life-enhancing than its
false pretender?

So perhaps I can explain a little more how we can answer the question “Can machines
think?” Like Alan Turing’s Turing Test and John Searle’s Chinese room, my approach is
based on the experiment in learning that I described in Part I. At the core of this experiment
is one simple rule of concept formation: to notice carefully the similarities and differences of
the data patterns of our experiences. In this chapter, we apply this rule to examine carefully
the job of a computer programmer and then look to see what the analogous activities are in
the human psyche.

Some computer background
In the early days of the data processing industry, computer systems were predominantly de-
signed from the system out to the user; they were technology-driven. In the 1970s this situa-
tion began to change as an increasing number of general users, being unable to obtain a
satisfactory service from the traditional methods of their data-processing departments, began
to seek ways of doing their own personal computing.

Originally, the principal tools that these intrepid pioneers had available to them were
mainframe timesharing systems, designed, not for non-technical users, but for systems and
applications programmers. With the introduction of the personal computer in the 1980s, this
situation changed radically. It is now generally recognized that if the full productivity poten-
tial of computer systems is to be realized, then they need to be designed from the human user
inwards. This is as true for computer professionals as it is for users whose primary function is
in finance, personnel, and other divisions not directly involved with information systems de-
velopment.

The two most important factors that have led to computer systems being designed from
the human perspective are the windows interface introduced by Apple in the 1980s, and ob-
ject-oriented modelling, which develops systems closely related to the structure of the human
mind, reflected in the Macintosh’s innovative desktop metaphor.

However, these interfaces don’t just happen by magic. Programmers have had to learn to
develop programs in quite new ways from those used during the early years of the data-pro-
cessing industry. As these methods use structures that closely model the deep underlying
structure of the Universe, programming becomes much more natural, as professional pro-
grammers using these methods know only too well.

Programmers have also had to learn to look much more closely at the way human beings
actually work at a computer interface. In the 1980s and 90s, a number of interface design
methods evolved to help them, which provide guidelines for a human-oriented approach to

CHAPTER 8: LIMITS OF TECHNOLOGY 623

computer systems design. These include Apple’s Human Interface Guidelines20 and IBM’s
Object-Oriented Interface Design: Common User Access [CUA] Guidelines,21 quoted in Chapter
1, ‘Starting Afresh at the Very Beginning’ on page 50. There are similar design guides for
UNIX systems22 and many for Microsoft Windows systems.23

While these guidelines differ somewhat in detail, they all agree that the starting point for
sound interface design is the development of a conceptual model or metaphor of the interface
that is expressible in terms that are familiar to users’ experiences and matches, as closely as
possible, their thought processes as they communicate with the machine. So we have seen the
metaphor of the desktop come into being, together with folders, documents, and other famil-
iar objects represented as icons.

These developments have led to the term user-friendly entering the English language, used,
not only for computer systems, but also for any device that is comparatively easy to use. The
reason why non-computer specialists can now use computer systems is that there has been a
fundamental semantic change in the interface between human users and the computer. Using
a technical term from the IT industry, the semantic gap between the technology and the user
has narrowed in the trend from technology-driven to human-oriented design. At least, that’s
the theory. With developers putting more and more complexity into their products, arrogant-
ly trying to second-guess what users want to do, practice actually falls far short of this ideal.

I began to look at the problem of modelling the human-computer interface in earnest dur-
ing the winter of 1979-80, shortly after I realized that our capitalist economic system held the
seeds of its own destruction within it, but long before the modern computer interfaces we see
today. At that time, I was wondering how to model the computer programmer’s job in the
process-entity matrix of an enterprise business model, such as that used in IBM’s Business
Systems Planning modelling technique, described on page 21 in Part I, ‘Integral Relational
Logic’.

As such models are developed independently of whether human beings or computers are
doing the work of the business, I needed to look at what is common to human thinking and
computer programming. This was essential if I were to discover whether a computer could
perform a programmer’s job without any intervention from a human being.

The central problem that I faced in developing this model is that there is no clear-cut dis-
tinction in computer systems between what is a process and what is an entity being processed.
As a human being interacts with a computer, what is an entity being processed by the com-
puter sometimes becomes a process acting on some other entity. In the case of personal com-
puter users, this change takes place within a few milliseconds, a change that I found extremely
difficult to represent in a process-entity matrix, which is more concerned with operational
procedures that take minutes, hours, or even days. Now, many years later, I have found a so-
lution to this problem, which I describe in this chapter.

624 PART II: THE UNIFIED RELATIONSHIPS THEORY

We can look at the human-machine relationship from three perspectives:
1. A human programming a machine.
2. A computer programming itself.
3. A human ‘programming’ herself or himself.

We can take it that a machine programming a human being is a ‘man-bites-dog’ type of
problem, and does not need to be considered explicitly. We are not just concerned with how
professional computer programmers in software development labs and IS departments inter-
face with the computer; we also need to consider the work of information assistants in user
departments using query languages, users themselves doing their own personal computing,
and any other use of a computer that can, in any way, be construed as programming.

From here, we shall then look at how a machine rather than a human being might perform
the programming task; that is how a computer might program itself. This will lead us to con-
sider how human beings could ‘program’ themselves, an activity that can be regarded as hu-
mans teaching themselves to think.

Computer structure
Before we begin to look at the way human beings program computers, we need to look at the
overall data processing function in a computer in the most general manner. We can best begin
by looking at the computer as a black box, without considering its internal design. This shows
us the basic mechanism of data processing: data is fed in, it is processed by the machine in
some way, and data comes out. Figure 2.1, ‘Basic data processing function’ on page 177, il-
lustrates this process quite simply.

The key point about the basic data-processing function is that it operates through linear
time. The input always exists before the output can be produced. It is vitally important to
remember this point for it leads to the explanation why it is possible for human beings to pro-
gram a computer, while a computer cannot do this for itself.

Of course, if we now look inside the computer, we can see that what is actually happening
is that there is a program being executed in the computer. So we can revise Figure 2.1 with
Figure 8.1.

Now in the computer’s memory there is no essential difference between programs and the
data that they process; they are both data. The central processing unit (CPU) can interpret a
bit pattern as either a computer instruction or data to be manipulated. Which it is, is depend-
ent on the context. If the bit pattern is presented as an instruction, the CPU attempts to ex-

���� ����������	

 Figure 8.1: Program execution

CHAPTER 8: LIMITS OF TECHNOLOGY 625

ecute it. If the bit pattern is fetched as data to be processed, the CPU acts on it according to
its current instruction.

These two types of data we can call active and passive data respectively, as illustrated in
Figure 8.2. These correspond to what Charles Babbage called the mill and store in his Ana-
lytical Engine designed over 150 years ago, although not built in his lifetime.24

This pattern is the essential mechanism of mechanical data processing: passive data is
transformed into another form of passive data by an active process in some way or other.

However, the modern computer is not like the flat tape of Turing’s Universal machine,
being directed to move backwards and forwards by the instructions on the tape.25 A comput-
ing system contains many levels of structure arranged hierarchically from high-level languages
to machine level. And at each level the data processing mechanism occurs. So it does not mat-
ter at which level we view the system; we still see a process taking an input and producing an
output. This table shows some examples of what these processes look like on each level.

Starting with a program written in a high level programming language, such as C or C++,
this consists of instructions that are translated into machine-level or assembly-level instruc-
tions. Each of these instructions is then broken down further until finally the chip is operating
on individual bits of data using the basic logic elements, AND, OR, and NOT gates.

An example of how arithmetical operations can be represented by logic circuits is given in
Figure 8.3.26 Here two bits, A and B, are added to a carry over, C, from a previous operation.
The result is S, with a new carry over, D. Using the notation of Boolean logic, described in
Subsection ‘The laws of thought’ in Chapter 9, ‘An Evolutionary Cul-de-Sac’ on page 650:

 S = (C∨(A∨B))∧((∼((C∧(A∨B))∨(A∧B)))∨((A∧B)∧C))
 and D = (C∧(A∨B))∨(A∧B).
 However, conceptually there is no need to stop at this point. It is quite possible to repre-

sent all logical operators in terms of just one, known as the Sheffer stroke, after Henry Mau-
rice Sheffer, who in 1913 discovered this operator, which he called ‘rejection’, corresponding

Level Example
High level language a = b + c;
Assembler language ar r0, r1
Micro-order mbr = a + c;
Elementary logic (C∧(A∨B))∧(A∨B)
Sheffer stroke |ab

 Table 8.1: Hierarchical levels of computer languages

����

�������

�����	
�

�	
��� �������

����

 Figure 8.2: Distinguishing active and passive data

626 PART II: THE UNIFIED RELATIONSHIPS THEORY

to the NOR (not-OR) operator, the opposite of disjunction. Sheffer found this function
when attempting to reduce the primitive ideas and propositions of Whitehead and Russell’s
Principia Mathematica27 to the minimum possible, rather like the way the superclass Being is
the most fundamental concept in IRL, described on page 167 in Chapter 1, ‘Starting Afresh
at the Very Beginning’. For as Sheffer said, “not all propositions can be proved and not all
non-propositional entities can be defined, some logical constants must be primitive, that is,
either unproved or undefined.”28

In a similar paper four years later, Jean Nicod used the stroke as a sign for non-conjunction
(NAND),29 which has since become current practice.30 In computer science, this is known as
a NAND gate, giving:

a|b= ∼(a∧b)
 To avoid the use of parentheses, the Sheffer stroke is today written as |ab, using a prefix

rather than an infix operator.31 The basic three operators in propositional (Boolean) logic can
then be written like this:

∼a = |aa
a∨b = ||aa|bb
a∧b = ||ab|ab

So all computer programs could, in principle, be reduced to a long string of Sheffer oper-
ators processing individual bits of data, although such a program would, of course, be quite

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

 Figure 8.3: One-bit adder using basic logic constructs

CHAPTER 8: LIMITS OF TECHNOLOGY 627

indigestible. The vitally important semantics that human beings need to understand the func-
tion being performed is missing at this level, and, indeed, all levels lower than the semantic
model of the program itself.

Douglas R. Hofstadter has called this way of looking at systems at different conceptual lev-
els ‘chunking’.32 For example, chess masters don’t look at a chess board in terms of the indi-
vidual pieces, but as groups of pieces, which have significance from the master’s perspective.
In a computer, groups of bits or groups of machine instructions can be chunked so that they
are meaningful to engineers and programmers working at these levels.

We can thus see that there is no essential difference between hardware and software, they
can be considered as a continuum, as Andrew Tanenbaum has pointed out.33 This is most
obviously seen with the operating system (OS), which acts as the control program for the
computer, for parts of the OS might be ‘hard-wired’ into the computer, while other parts are
loaded in from external sources.

Indeed, some programming languages can also be implemented in the microcode of the
hardware, more usually called firmware. For example, the BASIC interpreter on the early
IBM PCs and many home computers and the APL interpreter on the IBM 370/145 main-
frame,34 although these were implemented in different ways.

In more recent times, the programming language Java, which has taken Internet develop-
ers by storm, also demonstrates that there is no essential difference between hardware and
software. When running on the Internet, a Java applet runs in a virtual machine (VM), with
an instruction set that is different from all the physical machines it is running on. But SUN
Microsystems have implemented this VM as a hardware chip that can embedded in such
things as toasters and television sets.35

I cannot overemphasize the importance of this principle. As Tanenbaum has said, “hard-
ware and software are logically equivalent .”36 Whether a particular function is implemented
in hardware or software is concerned with practical issues like cost, speed, memory, and flex-
ibility.

 So there is no need to get excited about the prospects of a DNA computer, as I have seen
reported on the Internet. Such a computer would not add any functional potential to those
computers that already exist vis-à-vis human potential. Neither would a computer built with
the level of complexity of the human brain, although such a computer might work quite
quickly. So why oh why do the computer scientists deceive the public (and themselves) into
believing that the functional capabilities of a computer are a property of the hardware? As eve-
ry computer scientist must surely know, what a programmable computer can do is deter-
mined by its software. Analogously, human behaviour is mostly determined by our learning,
not from the proteins generated by the DNA molecule or a few chemical scurrying about in
the brain.

628 PART II: THE UNIFIED RELATIONSHIPS THEORY

Human program development
In the early days of data processing, programs that were being developed were punched on to
cards or paper tape, which was then fed into the machine for processing. Nowadays, programs
are stored within the computer itself as files of data. These programs are created by a human
programmer using some form of text editor, which may or may not be part of the language
translator, or, since the 1990s, through the use of a visual interface, generally called an inte-
grated development environment (IDE), such as IBM Rational Software Architect, which is
driven by the Unified Modeling Language (UML), Microsoft Visual C++ (MSVC), and Ap-
ple’s Xcode for Mac OS X.

So the computer is now involved, not only in executing programs, but also in assisting in
their development. How this is done in practice varies from language to language and from
implementation to implementation. The first distinction we can make is between compilers
and interpreters.

Whether or not a language is compiled or interpreted is not a function of the language per
se, although languages generally lend themselves more to one form than the other. For exam-
ple, PASCAL programs are normally compiled, although I had a PASCAL interpreter on my
Macintosh Plus in the mid 1980s. Conversely, BASIC and LISP programs are usually inter-
preted, although there are a number of compilers for these languages available.

Compiled programs
We can begin by looking at the job of a professional programmer developing operational ap-
plications within a business enterprise or software development house. These programs are
normally compiled into a concise executable form. A compiler is a program that translates
procedure descriptions from a high-level language into a machine level, most usually.

A notable exception to this is Java. This language is compiled into architecture-independ-
ent bytecodes, which can run on machines with any instruction set. To speed up the execu-
tion of these programs, a Java applet running under a World Wide Web browser can be
compiled when it is loaded, using what is called a Just-in-Time compiler (JIT). In these cases,
Java programs go through a two-stage compilation process.

There are two distinct steps: program development and program execution. In the pro-
gram development phase, the programmer will normally enter her program through a visual
interface or an editor, which may check for simple syntax errors if it is part of the language.
The machine-readable source program is then input to the compiler, linked with other pro-
grams and library routines to become an executable application. Figure 8.4 illustrates pro-
gram development using a compiler.

CHAPTER 8: LIMITS OF TECHNOLOGY 629

It is most important to note from this diagram that there are essentially two types of pro-
gram in computers, those that are used to perform some particular function for a business,
like payroll and word processing, called generated programs, and others that generate these
programs, like compilers in this example. Both these types of programs are active data. In or-
der to distinguish them, we can call them active-passive and active-active respectively, a re-
finement of data types, as they are conventionally viewed, as described on page 584 in
Chapter 7, ‘The Growth of Structure’. Figure 8.5 illustrates the relationships between these
more unconventional data types in a computer.

The difference between active-active and active-passive programs can be illustrated by the
development and use of a consumer durable, like a washing machine. Before a washing ma-
chine becomes available on the market, designers create blueprints that describe its features
and components. These are then passed on to a manufacturing plant, which actually makes
the product. This is then packaged ready for distribution to the consumer, who can then use
the product.

The design and manufacturing phases of developing a consumer durable are analogous to
program development. When I began modelling this program development process in 1980,
there was very little specific computer support for the design phase. Design documents were
produced by typists, before even word processors became generally available.

Today, in the object-oriented world we now live in, this situation has changed radically.
There is increasing emphasis on model-driven architecture (MDA), tools that are becoming
increasingly integrated within software development tools such as IDEs. As I have been re-

Source
(machine)

Source
(human)

Passive Passive

Compiler

Input
data

Output
data

Passive Passive

Active-active

Executable
application

Active-passive

Editor

Active-passive

 Figure 8.4: Program development using a compiler

630 PART II: THE UNIFIED RELATIONSHIPS THEORY

tired from the IT industry for several years, I am not up-to-date with this rapidly changing
environment. Just a few products that have caught my eye are IBM Rational Software Archi-
tect, System Architect from Telelogic in Sweden, now a subsidiary of IBM, and Casewise
Corporate Modeler. It was some extinct predecessors to these modelling tools that led to the
development of Integral Relational Logic and the Unified Relationships Theory. However,
these modelling tools have somewhat complicated the points that I want to make about mod-
elling computer programming rather than modelling the modelling process itself. To keep the
exposition as simple as possible, we can consider both modelling tools that are a source of ex-
ecutable code and compilers as active-active data.

Once a software house has developed a product, it is then packaged in the shrink-wrapped
package we can buy at our local computer store. At first sight, this process might look like
software manufacturing. But it isn’t really. This can be best seen by noticing that we can now
download software products that have gone through the first two phases of development di-
rectly from Internet. In this case, the packaging step is eliminated.

The product is now ready for use, just as we can use a washing machine once we have pur-
chased it. This software product is a generated program, which I call active-passive data. It is
this type of program that actually determines the functional capability of the computer.

Notice that a chess-playing program is a generated, active-passive program. Thus studying
the capabilities of such programs can tell us little about the nature of the creative software de-
velopment process. To determine whether a machine can think creatively or not, we need to
examine closely the nature of program generators. However, because of the cumbersome way
that program compilers operate, they do not really match the dynamics of the human creative
process. We therefore need to turn to the other type of program generator: the interpreter.

����
����
�

�
���

�	
�����������

�

�
��
����
��

�

�	
�����	
���

�

�
���

�	
���

��������

�������

����

 Figure 8.5: Principal data types in a computer

CHAPTER 8: LIMITS OF TECHNOLOGY 631

Interpreted programs
A formal definition of an interpreter that I have picked up somewhere on my travels is “a pro-
gram that follows an explicit procedure description incrementally, doing what the procedure
description specifies”. In other words, an interpreter executes each instruction of a high-level
language as it is presented to it, without converting a sequence of instructions, or program,
to machine-level first.

In the interesting case of a Java applet running under a World Wide Web browser, the
compiled program is interpreted in a virtual machine. But as the instructions that the inter-
preter is processing have been produced by a machine rather than a human being, we don’t
need to be concerned with this here.

The subject of interpreters is rather complicated because there are so many different ways
of interfacing with them. But as my whole approach to learning is to abstract simple patterns
that underlie the complexity of the world we live in, let me do this here.

Interpreters usually work in two ways: either immediate or deferred execution, the one be-
ing non-procedural in nature and the other, procedural. In the immediate mode of execution,
the computer immediately executes an instruction that we give it. The input to be executed
needs to be a syntactic whole. This is normally a command or instruction, which looks like a
one-statement program to the language interpreter.

One way of doing this is through a prompt in a command window, such as the Terminal
application in Mac OS X or the command interface in Windows, inherited from DOS. For
example, when I once entered dir d:\docs in the Windows command interface, the com-
puter immediately responded by giving me a listing of the docs directory on my D drive.
Here the command dir is active data operating on the passive data d:\docs. Similarly, in
the Terminal application, which provides a UNIX interface to Mac OS/X, we can get a list
of the files and folders in the Documents folder with this statement: ls -al Documents.

In immediate execution, the three steps of program development using a compiler illus-
trated above are combined into one as illustrated in Figure 8.6. In this case, there is no dis-
tinction between the instruction to be executed and any data that is to be processed. Both are
contained in the one source statement.

In deferred execution, statements of an interpreted language are stored in the computer as
a sequence of instructions, or programs, for later execution. These programs are usually given
names and so become new entities that can be interpreted by the interpreter. The main dif-

Source
statement Result

Passive Passive

Interpreter

Active-active

 Figure 8.6: Immediate execution of an intepreter

632 PART II: THE UNIFIED RELATIONSHIPS THEORY

ference between such programs and ones generated by a compiler is that a compiled program
runs directly under the operating systems independently of the compiler, while an interpreted
program executes within the environment provided by the interpreter. This is illustrated in
Figure 8.7.

How then does the interpreter distinguish between these two modes of operation? This
varies widely from language to language. I collected several examples during the 1980s and 90s
to illustrate this distinction, as listed in Table 8.2. No doubt others could be added with more
up-to-date examples.

Execution mode from terminal
Immediate Deferred

APL Everything else · (begins function def)
or program window

Basic No statement no. Statement no.
HyperTalk Message box Script editor
LISP Well-formed list DEFUN (begins function def)
MS/DOS Command Text editor to create file
MVS/TSO Command ISPF/PDF editor
PostScript (Host) Executive command Program stream from host
PostScript (Printer) Object with executable attribute Executable array encountered directly
Python Statement Text editor to create module as file
PROLOG ? (instruction for goal) consult(user).
REXX User-written program Normal method
SQL Interactive mode Embedded in host language

(Dynamic SQL in interpretative language)
VM/CMS Command XEDIT or other text editor

 Table 8.2: Modes of execution in interpretative languages

Input
data

Output
data

Passive Passive

Source
(executable)

Source
(human)

Passive Active-passive

Editor

Active-passive

Interpreter

Active-active

Active-passive

 Figure 8.7: Deferred execution of an interpreter

CHAPTER 8: LIMITS OF TECHNOLOGY 633

Computer-driven program development
So far we have been looking at the programming process as it is performed by a human pro-
grammer. However, a number of languages provide facilities for programs themselves to gen-
erate and execute programs dynamically. The language that drew my attention to this
possibility is A Programming Language (APL), a language that was used extensively in IBM
in the 1970s as a personal computing language for management information.

APL was initially developed by Kenneth Iverson when he worked at Harvard University
in the late 1950s as a mathematical notation to assist students in analysing various topics in
data processing.37 It became a programming language in 1966 after Iverson joined IBM. I my-
self learned something of the language in 1978 when I was responsible for selling IBM per-
sonal computing products in IBM’s North London sales office.

 APL is perhaps the most concise of languages, using just one or a few symbols for func-
tions that would require several statements in other languages, such as matrix inversion and
division (’) and matrix multiplication (+.õ), where . denotes a general-purpose inner-
product operator whose operands are other operators. APL was also designed from the outset
as an interactive language, enabling human beings to communicate directly with the comput-
er.

However, it is not these features of the language that I am concerned about here. APL also
has some little known features that enable an APL program to create, modify, and erase other
programs without the intervention of the human programmer. APL is not the only language
that has these capabilities; there are a few others that I shall mention. It is not good program-
ming practice to write programs that dynamically modify themselves, because they are noto-
riously difficult to debug. But there are occasions when such a facility is useful. Otherwise,
they would not have been built into the language.

In the words of Gilman Rose, “This leads to application systems that can appear intelligent
(in the sense of programs that write or edit other programs)”.38 As it is these facilities that are
mimicking the creative programming process of a human being sitting at a computer termi-
nal, we now need to study these languages in more depth.

The subset of programming languages that provide commands to enable a program to be
created or modified from within the program and then to be executed dynamically without
the agency of a human programmer we can call dynamically active. In contrast those languag-
es that are statically active, such as BASIC, C, COBOL, FORTRAN, PASCAL, and PL/I, do
not have such a facility. It is not possible, for example, to modify a program written in C with-
in a program written in C and then to execute that program from within the program. While
it is theoretically possible for a C program to modify, or even create C source statements from

634 PART II: THE UNIFIED RELATIONSHIPS THEORY

some other form of data, it is not then possible to execute this program from within the C
program.

As dynamically active languages are more procedural than non-procedural in nature, we
can call them, in full, Dynamically Active Procedural Programming LanguagEs, or DAP-
PLES for short. Examples of dapples are APL, Python, HyperText, the language of Apple’s
HyperCard (now withdrawn), LISP, a list processing language developed by John McCarthy
of MIT, and PostScript, a page description language for high quality printers created by John
Warnock of Adobe Systems.39 We can use these examples to see the nature and diversity of
these types of languages. All these languages have two particular features, both of which are
probably necessary for a language to be dynamically active.

The first of these is that they are all extensible. That is, they have an open grammar as op-
posed to the closed grammar of most conventional programming languages used in business.
This means that programs written in extensible languages become new functions of the lan-
guage, which syntactically are treated in exactly the same way as the primitive functions of the
language. There is thus no distinction between commands and functions as there is in non-
extensible languages.40

Secondly, dapples treat active and passive data in a similar way, to a greater or lesser extent.
This can most simply be seen when using these languages interactively. If the name of a var-
iable is presented to the translator, its value is immediately returned. Similarly, if the name of
a function is entered then this is executed, and the result is again displayed on the screen. To
give a simple example of this phenomenon, as addition is generally a primitive function of
dapples it is possible to enter 2+2 in a syntax recognized by the language and to receive the
answer 4. Dapples can thus be used as rather expensive calculators!

It was this situation that led me to the difficulty of representing active and passive data in
a process-entity model. Most particularly, conventional modelling techniques are not able to
satisfactorily represent the read-eval-print loop in LISP, which well illustrates the fundamen-
tal mechanism in data processing. In LISP, evaluating passive data simply means to return its
value, given its name, while evaluating a function is just another name for executing it.

The key point to note is that when used in this way, dapples perform the translation and
execution processes immediately and consecutively. In other words, a statement presented to
it is passive data to the translator and active data to the evaluator. To separate out these two
functions, it is necessary to tell the translator to defer execution in the manner outlined above.

Now, as I have said, the key characteristic of some dynamically active languages is that they
are able to modify and create programs written in the language and then immediately execute
them in exactly the same way as they would translate and execute a program presented by a
human programmer. Rather than using the text editor built into the language, dapples do this

CHAPTER 8: LIMITS OF TECHNOLOGY 635

by regarding programs as strings of characters, which can then be manipulated by the string
or symbol handling facilities of the language like any other symbols.

There are three steps in the human programming process that we need to look at:
1. Telling the computer that a program is to be entered and not executed.
2. The entering of the program at the terminal or modifying an existing program.
3. Presenting that program to be executed.

The second of these is the essence of human computer programming, the creative part.
The other two functions are mechanical in nature, and act in support of the programming
function. To examine how a computer might simulate the human programming function,
we need to look at how these three functions can be programmed into a program.

In a dapple, a program can mechanically perform all the tasks mentioned above, but typ-
ically in a somewhat different way from the human programmer. Let us suppose, then, that
a human programmer has written a program that can write new programs, and execute them
dynamically.

Dynamically deferring execution
First of all, the program must tell the interpreter not to execute the instructions presented to
it by the program, but to go into deferred execution mode. Whether it uses the same facility
as the human programmer depends on the language and the environment. What is needed is
the facility to convert programs, stored in their active, executable state, to a passive form that
can be manipulated by the program. The modified program then generally needs to be con-
verted back into its active form by some means. Alternatively, if the computer program is cre-
ating a completely new program from scratch, only the second of these facilities is required.
Table 8.3 shows how active data can be converted to passive and vice-versa in the five lan-
guages we are looking at as examples.

For example, in APL, ÿCF creates a matrix from the function, whose dimensions are the
number of lines and the maximum number of characters in a line. In APL*PLUS, there is also
a function, ÿVR, which converts the function to a vector representation. ÿDEF, a more

Deferred execution from program
Active→Passive Passive→Active

APL ÿCF ÿFX
HyperTalk Get the script Set the script
LISP Not known DEFUN
PostScript cvlit cvx
Python Not known def

 Table 8.3: Converting active and passive forms of program dynamically

636 PART II: THE UNIFIED RELATIONSHIPS THEORY

powerful version of ÿFX, converts both matrix and vector representations to active func-
tions.

In LISP, both functions and function definitions are lists, for LISP stands for LISt Process-
ing. For instance, a human programmer could enter this statement to define a function to
square a number, which could then be evaluated:

CL-USER 1 > (defun square (x) (* x x))
SQUARE

CL-USER 2> (square 8)
64
As function definitions are lists, a human programmer could write a function definition

that sets a variable to a list that defines a function as passive data. This could then be convert-
ed into active data with eval. Then this function could be executed. Here is an example in
interactive mode:

CL-USER 1 > (setq funcdef '(defun square (x) (* x x)))
(DEFUN SQUARE (X) (* X X))

CL-USER 2 > (eval funcdef)
SQUARE

CL-USER 3 > (square 7)
49

Dynamically editing programs
When the computer creates or modifies a program, it generally needs another method of do-
ing so from that used by the human programmer; it cannot use the text editor directly because
this is intended for people. So generally there is no way of invoking the text editor from with-
in the language.41

Instead, program interpreters that create or modify programs do so by using the string or
symbol handling facilities of the language. The purpose often is to assist in the programming
function; to use a program to manipulate other programs rather than doing this process man-
ually, which can be tedious work. The text, of course, needs to conform to the syntax of the
language in order for it to be recognized by the interpreter when it is converted into execut-
able form. In mathematical terms, the string of symbols needs to ‘well-formed’; otherwise
there will be a syntax error when the interpreter tries to execute the statement.

In an extensible language, programs that are created in this way, or by a human program-
mer, become new instructions in the language. The power of the programming language is
thus increased whenever a new function is created.

CHAPTER 8: LIMITS OF TECHNOLOGY 637

Now, two types of program can be created in this way: either the program is a simple ap-
plication, which processes passive data, and so can be called active-passive, or it may contain
instructions to enable it to generate new functions to be added to the language. In this latter
case, the program is active-active. When this program is then executed by the interpreter,
there is thus an active-active program running another active-active program beneath it.

Two key issues relating to whether computer programs can be creative or not arise from
this mechanism. The first is that, in theory, a program could be written that would indefi-
nitely go on creating new active-active programs to be added to the language. This process is
somewhat like a program that calls itself recursively in that the process needs to be terminated
in some way if it is not to lead to an infinite regress, a repetitive process illustrated in Fig-
ure 7.3, ‘Programming iteration block’ on page 583. However, it is not exactly the same.

A recursive program is active-passive and is following some well-defined algorithm in a
predetermined manner. After a specified number of iterations, this process terminates, and
the program returns a result. The PostScript program that produced a fractal fern in Fig-
ure 1.38 on page 134 in Chapter 1, ‘Starting Afresh at the Very Beginning’ was written re-
cursively. The diagram you see is the result. The purpose of an active-active program, on the
other hand, is to create new functions dynamically. This is not a mechanistic iterative process,
so there is no purpose in writing a program that continues to create active-active programs
indefinitely.

The second key issue is where do the symbols come from that are to form the new or mod-
ified program? Within the computer these cannot be created out of nothing. Every symbol,
which is to form part of the new program, must exist before the program can start. The com-
puter cannot create new symbols that are meaningful in any real sense. The meaning of sym-
bols is something that is only understood by human beings.

Dynamically executing programs
Having created or modified a program, there now needs to be a means of dynamically exe-
cuting it. In extensible languages, programs are executed simply by entering the name of the
program. However, sometimes it is necessary to explicitly execute a program. This is necessary
when the program does not have a name; for instance, it consists of just one, or a few, state-
ments. Table 8.4 lists some of the commands that do this.

 In APL, for example, ¯ also acts like ÿFX or ÿDEF in that passive data can be executed
directly by this execute function. This does not need to be in the form of a function. For ex-
ample, ¯'A+B' is exactly the same as A+B. There are times when it is more convenient
to express this operation using execute, rather than with the active data directly. Variables can
be assigned these active pieces of code, as passive data, and then executed. The INTERPRET
instruction and the VALUE() built-in function provide similar facilities in REXX.

638 PART II: THE UNIFIED RELATIONSHIPS THEORY

The whole process of computer-driven program development and execution is depicted in
Figure 8.8. The first line shows a human programmer creating a program that can execute
under the control of an interpreter to create another program, shown in the second line. But
is it possible to dispense with the second line in the diagram so that this diagram reduces to
Figure 8.7 on page 632, but with a machine providing the initial input not a human being?
In other words, could a computer initiate the process of programming itself, or can a machine
only do what we tell it to do, as Ada Lovelace surmised 150 years ago?

The key to the answer to this question lies in the fact that the basic data processing func-
tion in computers always operates through linear time. Every program that has ever been writ-
ten has been helped on its way by a program generator along the lines that I have described
in this chapter. There is thus a long mechanical cause and effect chain going back to when
the very first computer was built. So who built the first computer? Where did this come from?
How is it that we human beings can create computer programs without apparently having
some already pre-existing program to get us started? To see the answer to these questions, we

Immediate execution from program
Implicit Explicit

APL Function name ¯or ÿFX
HyperTalk Script name Script name
LISP Function name EVAL
PostScript Executable array encountered indirectly exec
Python Not known def

 Table 8.4: Dynamically executing programs

Source
(executable)

Source
(variable)

Passive Active-passive

Input
data

Output
data

Passive Passive

Interpreter
Active-active

Active-active

Active-passive
Interpreter

Active-active

Editor Source
(executable)

Source
(human)

Passive Active-activeActive-passive

 Figure 8.8: Program development with dynamically active languages

CHAPTER 8: LIMITS OF TECHNOLOGY 639

must now look at the characteristics of human beings that correspond to the features of com-
puting systems that I have been describing.

Analogous human cognitive characteristics
Not unlike computer systems, we human beings, also process data. However, rather than tak-
ing in data that is input to us, the Totality of Existence provides us with the data that we pro-
cess. As our inner cognitive faculties are part of the Universe, they also provide us with data.
We process all this data by using our intelligence and intellect to interpret the data patterns
of our experiences, which gives us the knowledge and information that we need to live in the
world of practical affairs.

So our cognitive faculties can be divided into two groups, just as in a computer. Our
knowledge and information correspond to passive data and intelligence and intellect to active
data. Our passive cognitive faculties—our knowledge—can be further subdivided into two
categories. As Gilbert Ryle has observed, human knowledge can be considered both as the
facts we know and the skills we know how to perform.42 These we can call passive-passive,
which reduces to passive without any loss of meaning, and active-passive respectively. Human
knowledge is thus analogous to ‘raw’ data and generated programs respectively.

Our intelligence and intellect also naturally fall into two parts. First of all, it is our intelli-
gence that drives our thinking and learning, which are also skills that are quite different from
our other skills. Thinking is the skill that helps us to learn skills, including thinking and learn-
ing themselves. We can see thinking as a visualization process, that sometimes, but not al-
ways, helps us with the development of our skills. Thinking is most useful in developing
mental skills, such as playing chess and computer programming. But it is less useful in learn-
ing to play the piano or to speak a foreign language, for instance, where feeling is vitally im-
portant.

In general, the more that we think about the development of our skills the more proficient
at them we become. Most particularly, in my case, because I have developed a model of my
learning skills since 1980, I can now learn at a very rapid rate. If this were not so, it would
have been quite impossible to develop a framework for a synthesis of everything. I would have
been quite overwhelmed by the task.

While our intelligence lies behind our thinking skills, it is intellect that drives our reason-
ing skills. Sometimes, when intelligence sees a new pattern, a new concept or thought arises,
which we can store as a mental image to which we can attach words and other symbols. Once
we have formed these concepts, we can then arrange them in a multitude of ways according
to the rules of Integral Relational Logic, which embraces traditional Aristotelian logic within
it. We can call this process reasoning.

640 PART II: THE UNIFIED RELATIONSHIPS THEORY

Reasoning doesn’t really assist in the development of our skills. It is a mental process that
enables us to derive new facts from already existing concepts, while thinking is the process of
creating those concepts in the first place, as illustrated in Integral Relational Logic (to be
moved). Reasoning is thus more like a developed skill, which, of course, we can improve
through practice. As is well known, no new knowledge is ever created through the deductive
logic of mathematics.

We can therefore consider intelligence, which lies behind our thinking and learning skills,
to be analogous to program generators in computers, while intellect, which drives reasoning,
corresponds to developed programs. Figure 8.9 shows these relationships, which are analo-
gous to the data types in Figure 8.5 on page 630.

So can machines think? Well, the analysis in this chapter shows quite clearly that the fea-
ture of a computer system that is closest to our thinking and learning skills is a program writ-
ten in a dynamically active programming language programming itself. But we have seen that
for a dapple to write programs, the symbols that it uses must already exist. All mechanical pro-
cesses are trapped in the linear, horizontal dimension of time.

We can compare this perspective to the reasoning that led Aristotle to the existence of an
unmoved mover, which led Thomas Aquinas to the first of his five ‘proofs’ for the existence
of God. As Aristotle said, “That which is moved must be moved by something, and the prime
mover must be essentially immovable, and eternal motion must be excited by something eter-
nal.”43 In Thomas’ words, “Now anything changing is being caused by something else. …
Now we must stop somewhere, otherwise there will be no first cause of the change, and, as a
result, no subsequent causes. … We arrive then at some first cause of change not itself being
changed by anything, and this is what everybody understands by God.” 44

�����
���
��	���

�	
�����������

���

	���
�����

�������
���������

��	��	������
�	��
��	���

�	
�����	
���

��
�������
���

���	
�

�������

����������
������	�����

�	
���

��	�	���������	��

 Figure 8.9: Analgous human cognitive faculties

CHAPTER 8: LIMITS OF TECHNOLOGY 641

In terms of computer programming, every program that has ever existed has come into be-
ing through another program. So where did the first program come from? There is only one
possible answer to this question. As the first program cannot have originated along the hori-
zontal dimension of time, through an endless string of cause and effect processes, by the Prin-
ciple of Unity, it must have arisen from the vertical dimension, from the timeless, formless,
Absolute Whole, from God the creator. This means that Richard Dawkins’ program The
Blind Watchmaker, which is designed to show that evolution progresses without divine inter-
vention, could not have become manifest without the creative power Life arising from our
Divine Source. All scientific theories that deny the existence of Wholeness are actually being
created by those very same energies whose existence the theories deny!

In general, it is only possible for us to use our intelligence to develop new concepts and to
learn new skills because of the divine energies within us. This means that our creative learning
is the leading edge of all evolutionary processes on this planet, not the development of com-
puter programs. It is thus a great delusion to believe that technological development can drive
economic growth indefinitely. The only way forward for humanity is therefore to focus our
attention on our spiritual awakening and liberation, being guided to Oneness and Wholeness
by the Principle of Unity: Wholeness is the union of all opposites.

